Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging

نویسندگان

  • Adusei Jumah
  • Robert M. Kunst
چکیده

Motivated by economic-theory concepts—the Fisher hypothesis and the theory of the term structure—we consider a small set of simple bivariate closed-loop time-series models for the prediction of price inflation and of longand short-term interest rates. The set includes vector autoregressions (VAR) in levels and in differences, a cointegrated VAR, and a non-linear VAR with threshold cointegration based on data from Germany, Japan, UK, and the U.S. Following a traditional comparative evaluation of predictive accuracy, we subject all structures to a mutual validation using parametric bootstrapping. Ultimately, we utilize the recently developed technique of Mallows model averaging to explore the potential of improving upon the predictions through combinations. While the simulations confirm the traded wisdom that VARs in differences optimize one-step prediction and that error correction helps at larger horizons, the model-averaging experiments point at problems in allotting an adequate penalty for the complexity of candidate

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Inflation Forecasting in a Changing World

Abstract This paper revisits real-time forecasting of U.S. inflation based on Phillips curve-inspired linear regression models. Our innovation is to allow for both structural breaks in the regression parameters and the variance as well as uncertainty regarding which set of predictor variables one can include in these regressions (‘model uncertainty’). Structural breaks are described by occasion...

متن کامل

Rainfall-runoff process modeling using time series transfer function

Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Identification of Factors Affecting on Credit Risk in the Iran Banking Industry of Iran Using Stress Test

Credit risk is due to that recipients of the facility, deliberately or involuntarily, don’t have ability to repay their debts to the banking system that this risk is critical in Iran compared to the global. Therefore, the purpose of this study was to investigate the effect of macroeconomic variables on credit risk of Iranian banking industry during the 2006-2016 years and also simulation and pr...

متن کامل

Averaging Forecasts from VARs with Uncertain Instabilities

Recent work suggests VAR models of output, inflation, and interest rates may be prone to instabilities. In the face of such instabilities, a variety of estimation or forecasting methods might be used to improve the accuracy of forecasts from a VAR. The uncertainty inherent in any single representation of instability could mean that combining forecasts from a range of approaches will improve for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008